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Machine learning algorithms are an important measure with which to perform landslide susceptibility
assessments, but most studies use GIS-based classification methods to conduct susceptibility zonation.
This study presents a machine learning approach based on the C5.0 decision tree (DT) model and the
K-means cluster algorithm to produce a regional landslide susceptibility map. Yanchang County, a typical
landslide-prone area located in northwestern China, was taken as the area of interest to introduce the
proposed application procedure. A landslide inventory containing 82 landslides was prepared and subse-
quently randomly partitioned into two subsets: training data (70% landslide pixels) and validation data
(30% landslide pixels). Fourteen landslide influencing factors were considered in the input dataset and
were used to calculate the landslide occurrence probability based on the C5.0 decision tree model.
Susceptibility zonation was implemented according to the cut-off values calculated by the K-means clus-
ter algorithm. The validation results of the model performance analysis showed that the AUC (area under
the receiver operating characteristic (ROC) curve) of the proposed model was the highest, reaching 0.88,
compared with traditional models (support vector machine (SVM) = 0.85, Bayesian network (BN) = 0.81,
frequency ratio (FR) = 0.75, weight of evidence (WOE) = 0.76). The landslide frequency ratio and fre-
quency density of the high susceptibility zones were 6.76/km2 and 0.88/km2, respectively, which were
much higher than those of the low susceptibility zones. The top 20% interval of landslide occurrence
probability contained 89% of the historical landslides but only accounted for 10.3% of the total area.
Our results indicate that the distribution of high susceptibility zones was more focused without contain-
ing more ‘‘stable” pixels. Therefore, the obtained susceptibility map is suitable for application to landslide
risk management practices.

� 2021 China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Landslides are one of the most frequent geomorphologic pro-
cesses occurring in China, especially in the Loess Plateau area
(Zhuang et al., 2018; Peng et al., 2019; Tang et al., 2020). Located
in the transition zone between the first and second units of China’s
topography, this area contains various complicated geological
environments. The majority of the deposit area is covered by loess
characterized by a heightened sensitivity to suction stress and col-
lapsibility, which are prone to catastrophic landslides under rain-
fall (Zhang and Liu, 2010; Lian et al., 2020; Shu et al., 2020). For
instance, the Xiangning landslide in Shanxi Province of the Loess
Plateau, which occurred on March 15, 2019, caused 20 deaths
and 13 injuries (Zhao and Zhao, 2020). Because these events are
commonly characterized by large volumes and fast movement, it
is difficult for local governments to perform successful emergency
response campaigns. To avoid the potential loss of lives or damage
to the environment and social economy, it is necessary to develop
techniques to assess landslide hazards and risks (Corominas et al.,
2014; Crawford et al., 2018).
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Landslide susceptibility modelling allows us to portray the spa-
tial distribution of landsliding at a regional scale (Guzzetti et al.,
2006) and can be subsequently used for risk management and land
use planning (Fell et al., 2008; Chen et al., 2019). There are three
main types of approaches that have been developed for landslide
susceptibility modelling: heuristic models, physically based mod-
els and data-driven models (Zêzere et al., 2017; Shu et al., 2019;
Medina et al., 2021). Professional knowledge and experiences play
an important role in heuristic models because these models esti-
mate landslide potential by mainly considering investigator opin-
ions. Hence, subjective judgement from experts on
environmental variables is more important than on-site data and
evidence (Barredo et al., 2000; Van Den Ecekhaut et al., 2010).
Physically based models can better reveal the mechanism of land-
slide occurrence, but the data acquisition about input parameters
over large areas is generally an operational challenge (Sorbino
et al., 2010; Bueechi et al., 2019). Meanwhile, most physical mod-
els are time-consuming because of the application of complex
hydrological assumptions (e.g., Rossi et al., 2013). Hence, data-
driven models have become more widely used in the recent past
and can be divided into two categories, statistically based models
and machine learning models (Pradhan, 2013; Reichenbach et al.,
2018; Youssef and Pourghasemi, 2021). The former approach is
mainly based on the process of weighting landslide-related factors
using probabilistic or statistical techniques. Specifically, numerous
attempts have been made by researchers to develop multicriteria
methods (Feizizadeh et al., 2014; Kouli et al., 2014), bivariate or
multivariate statistical methods (Yalcin et al., 2011; Felicísimo
et al., 2013; Schlögel et al., 2018). However, these approaches gen-
erally require environmental factors that exhibit a normal distribu-
tion, which are seldom available in some cases. To remedy this,
various machine learning methods have been employed in land-
slide susceptibility assessments, such as the extreme learning
machine (Huang et al., 2017), artificial neural network (Lee et al.,
2003; Yilmaz, 2009; Wang et al., 2019), and tree-based models
(e.g., random forest) (Tsangaratos and Ilia, 2016; Wu et al., 2020).
Additionally, several hybrid methods have also been proposed by
integrating machine learning with statistical approaches, such as
the fuzzy logic relation (Pradhan, 2011) and rough set-SVM (Peng
et al., 2014). Generally, these models not only have higher accura-
cies but also allow the use of different types of environmental fac-
tors as input variables because these models are inherently
nonlinear. Thus, unlike statistical models, machine learning mod-
els require less a priori historical landslide data (Pham et al.,
2019), which helps such methods to be implemented in the deter-
mination of novel relationships in datasets.

Nevertheless, the occurrence of landslides is a geology-based
engineering problem. Although many machine learning models
are better choices considering their prediction accuracy, they fail
to describe the mechanism of landslide occurrence. Additionally,
spurious correlations and overfitted points are drawbacks of
these ‘‘black box” models. In contrast, a decision tree (DT) algo-
rithm is a ‘‘white box” model, which means that it offers an accu-
rate depiction of the relationships between the input and output
data (Ma et al., 2017). Moreover, it can present the importance of
input factors, which is important for result analysis and factor
selection. Its basic concept is that the complex group is split,
including its independent variables, into several simpler groups
by conditional methods, which may lead to an easier solution
(Quinlan, 1993). Several algorithms have been proposed in the
literature to implement the DT model and to perform landslide
susceptibility evaluations, such as classification and regression
tree, chi-square automatic interaction detector decision tree,
and ID3 (Ture et al., 2009; Pradhan, 2013; Tsangaratos and Ilia,
2016). However, very few studies have employed the C5.0
2

algorithm, which is a relatively novel approach. Hence, landslide
susceptibility mapping was conducted using the C5.0 decision
tree model in this study. Meanwhile, to test the reliability of
the resulting landslide susceptibility map, two machine learning
algorithms and two statistically based models were utilized as
a comparison, namely, support vector machine (SVM), Bayesian
network (BN), frequency ratio (FR) and weight of evidence
(WOE) models.

In addition to the calculation of landslide occurrence probabil-
ity, the classification of landslide susceptibility is another chal-
lenge in seeking a suitable susceptibility map. Some studies
adopted the expert-based approach, which divided the histogram
of the probability map into different categories (Guzzetti et al.,
1999; Dai and Lee, 2002). However, this type of continuously
changing data into two or more categories was associated with
great uncertainty. Currently, statistically based classification meth-
ods are commonly available, including natural breaks, quantiles,
equal intervals and standard deviations (Baeza et al., 2016; Zhao
and Chen, 2020). However, such methods can only be performed
on a GIS platform and are neither statistically tested nor fully auto-
mated (Ayalew and Yamagishi, 2005). In fact, a few studies have
shown the disadvantages of this type method. For example, the
natural break is useful only when there are large jumps in the
dataset. The equal interval approach is a cut-off-dependent
approach in which the results may vary with the breakpoints of
reclassification (Zhou et al., 2018). To overcome these drawbacks,
a novel classification method based on the K-means cluster algo-
rithm was proposed in this study to rapidly classify landslide
susceptibility.

The present study aims to generate a reliable landslide suscep-
tibility map at a regional scale. Yanchang County on the Loess Pla-
teau (China) was selected as the area of interest for this case study.
This region has experienced various landslide hazards throughout
the past few decades, so this study is of great importance to update
the study of model application, especially with the purpose of
improving the accuracy of the results. Specifically, our objective
mainly includes: (i) the determination of the probability of land-
slide occurrence by using a decision tree approach, (ii) the achieve-
ment of landslide susceptibility zonation by the K-means cluster
algorithm, and (iii) the analysis and validation of model
effectiveness.
2. Materials

2.1. Study area

This study was conducted in Yanchang County, which is located
in the Yan’an city of the Loess Plateau area, China, and includes 13
towns (Fig. 1). It lies between longitudes ranging from 109�330E to
110�300E and latitudes ranging from 36�140N and 36�460N, with a
total area of approximately 2368 km2. The population of this area
is approximately 1.4 � 105, so it is considered a populated region
with a density of more than 50 people/km2. The elevation of the
area ranges from 473 m above sea level (a.s.l.) at the river valley
to 1369 m a.s.l. at the highest peak, characterized by a low south-
east and high northwest trending terrain (Fig. 1b).

From the perspective of geology, a total of 5 sedimentary rock
units exist in the area, which are only associated with Triassic
and Quaternary deposits. The strata contain the Yongping (T3y),
Wayaobao (T2w), Hujiacun (T3h), and Tongchuan (T2t) formations
from the Triassic period, and Quaternary loess (Li, 2018; Guo
et al., 2019a). Among them, Qp1-3 and T2t, which are composed
of alternating layers of sandstone and mudstone, are the most
common outcrops. The climate regime is the mainland monsoon,



Fig. 1. Location of the study area (the coordinate system used is WGS84). (a) Location of Shaanxi Province in China, (b) remote sensing image of the Yan’an City from Google
Earth, and (c) the topography map of the Yanchang County showed by the digital elevation model.

Table 1
The sources and characteristics of the data used in the paper.

No. Data Scale Resolution
(m)

Source Purpose

i DEM / 30 http://www.
gscloud.cn/

Preparing 9
factor maps:
Fig. 3a, b, c,
d, e, f, g, h, j

ii RS images / 30 Landsat 8
satellite

Preparing 3
factor maps:
Fig. 3k, l, m
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which is dominated by two factors, i.e., the orographic effects of
the Qinghai-Tibet Plateau and the prevailing northwest wind from
Mongolia (Li, 2018). Since it is a mountainous area, the climate can
vary locally due to elevation differences: in the area with eleva-
tions below 800 m a.s.l., the annual rainfall mostly ranges from
450 mm to 500 mm, whereas in the western part with elevations
above 1100 m, the average annual rainfall reaches approximately
550 mm (Guo et al., 2019a). Approximately 60%–70% of the total
annual rainfall is concentrated in the rainy season (July–Septem-
ber). The rivers and valleys in Yanchang County are well developed,
and dozens of large and small streams compose a complex stream
network, among which the Yan River is the largest one. It flows
through the area from west to east, and the settlements are mainly
distributed along the banks of the river.
iii Geological
map

1:100,000 / Local
monitoring
institute,
archived
documents,
literature

Preparing
lithology
map

iv Geological
survey
reports

/ / Landslide
inventory,
model
validation
2.2. Data sources

The data used in this study mainly include: (i) the digital eleva-
tion model (DEM), (ii) remote sensing (RS) images, (iii) the geolog-
3

ical map, (iv) detailed geological survey reports, (v) photos of
landslides, and (vi) aerial images. Detailed information on the data
is listed in Table 1.
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2.3. Landslide mapping

Landslide inventory is a basic but essential tool for landslide
hazard management, representing a fundamental base of knowl-
edge on the spatial distribution of existing landslides (Tian et al.,
2019). In the present study, the landslide inventory was obtained
based on different data as follows: (i) the geological survey report
provided by Xi’an Center of China Geological Survey and (ii) visual
interpretation of remote sensing images taken from Google Earth
(https://www.google.com/earth/). Then the detailed locations of
the landslides were compared with previous literature (Li, 2018;
Guo et al., 2019a) because it can help to calibrate the landslide
inventory (Guzzetti et al., 2012; Taylor et al., 2015). The survey
reports contained the detailed characteristics of landslides (e.g.,
location, area, volume, etc.), so a specific GIS-based database was
created to store and process all the collected data, which were
linked to the landslide distribution in ArcGIS.

The landslide inventory reveals 82 landslide hazards in the area
(Fig. 2a), with a total area of 3.09 km2, accounting for approxi-
mately 0.1% of the total area of Yanchang County. The cumulative
volume of the landslides is approximately 5.2 � 107 m3, among
which one landslide has a volume greater than 10 � 106 m3, and
37 landslides have volumes ranging from 10 � 105 m3 to
10 � 106 m3 (Guo et al., 2019a). Considering the Varnes classifica-
tion system (Varnes, 1978; Hungr et al., 2014), these landslides can
be roughly divided into three categories (Fig. 2b–d, modified from
Li, 2018): (i) small and shallow earth slides, most of which involve
Fig. 2. Preparation of the landslide inventory in the Yanchang County. (a) Spatial distribu
composite earth slide–debris flow.

4

the ground surface soil layer; (ii) shallow debris flows; and (iii)
composite earth slide–debris flows. However, the total number of
landslides classified as types (ii) and (iii) are small (less than 10),
and their depths are similar to that of type (i). Given that our main
objective is not to include landslide typology in the landslide sus-
ceptibility assessment, we took all the landslides as being a single
group in the current analysis. A comparison with some recent stud-
ies also showed that it was acceptable for use in regional assess-
ments (Shu et al., 2019; Medina et al., 2021). From the
perspective of occurrence time, most of the landslides occurred
during the rainy season, whereas only a few landslides occurred
in the dry season period, thus indicating that rainfall is an impor-
tant factor triggering landslides in the area. Meanwhile, since loess,
which is widely distributed, has a high collapsibility and a great
water sensitivity, the region is characterized by many gullies and
evident soil erosion. Many loess landslides are activated under sev-
ere rainfall events, engineering activities and agriculture irrigation
practices.

2.4. Preparation of influencing factors

According to the field survey and available data, fourteen influ-
encing variables associated with topographical, hydrological, geo-
logical and environmental factors were prepared for the
preliminary analysis of landslide susceptibility mapping. Specifi-
cally, these factors included the elevation, slope, aspect, plan cur-
vature, profile curvature, surface roughness (SDS), surface cutting
tion of the landslides, (b) a shallow landslide, (c) a small-scale debris flow, and (d) a

https://www.google.com/earth/
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depth, relief degree of land surface (RDLS), distance to rivers, topo-
graphic wetness index (TWI), modified normalized difference
water index (MNDWI), normalized difference vegetation index
(NDVI), normalized difference barren index (NDBI) and lithology.
Then, the corresponding thematic factor layers were obtained in
raster form based on the GIS platform. Among these factors, aspect
and lithology are discrete variables that have fixed categories, and
the other twelve factors are continuous variables. To achieve rea-
sonable classification of these variables, every variable was dis-
cretized into several small classes using the same intervals first.
Then, the categories with similar frequency ratio values (see
methodology section for the principles of FR method) were placed
into the same group (Fig. 3). Generally, the division of factors is
rough if the number of classes is small, while the model complexity
is large if the number of classes is high (Huang et al., 2020a). Some
studies (Aditian et al., 2018; Chang et al., 2020; Huang et al.,
2020a) have shown that class numbers between 4 and 12 are con-
ductive to landslide susceptibility analysis, and the classification of
all factors in this study fits this point well. The preparation of these
maps and their impacts on landslide occurrence are described
below.

Elevation (Fig. 3a): Environmental settings on slopes normally
vary with elevation; thus, elevation is often considered an impor-
tant factor driving landslide occurrence. The digital elevation
model (DEM) with a 30-m resolution of Yanchang County was
downloaded from the website (http://www.gscloud.cn/home).

Slope (Fig. 3b): The slope angle can directly affect slope stability
and has been widely used in landslide susceptibility analysis (e.g.,
Catani et al., 2013). The slope map of the study area was created
from the digital elevation model (DEM) with a resolution of
30 m. It was divided into five classes.

Aspect (Fig. 3c): Aspect was also derived from the DEM and was
first divided into nine classes (i.e., flat area, north, northeast, east,
southeast, south, southwest, west, northwest) according to the
geographic orientations of the topography. Then, the classes with
similar FR values were combined into one class, and the resulting
map contained seven classes.

Plan curvature (Fig. 3d): Plan curvature can be described as the
curvature of a hypothetical contour that passes through a specific
pixel. It reflects the rate of change of aspect along a contour and
thus can affect the flow of water (direction and amount, etc.) across
a surface. The plan curvature map was generated from the DEM
and divided into seven classes.

Profile curvature (Fig. 3e): Profile curvature influences the
acceleration and deceleration of flow through slopes, thus some
valuable information about erosion and deposition is provided
(Wu et al., 2020). Its values ranged from 0 to 30 and were divided
into five classes.

Surface roughness (SDS) (Fig. 3f): Surface roughness is an
index that can reflect the fluctuation degree and erosion intensity
of the land surface. It can be defined as the variability of the slope
angle in a specific area and is calculated as the standard deviation
of the slope (i.e., SDS) (Atkinson and Massari, 1998). Mathemati-
cally, it can be estimated as follows:

SDS ¼ 1= cos Sð Þ ð1Þ
where S is the slope. The SDS values of Yanchang County vary from
1 to 1.57, and are divided into six classes.

Surface cutting depth (Fig. 3g): The surface cutting depth is
defined as the difference between the lowest elevation and the
average elevation in a certain area around a given point (Huang
et al., 2020b). It can be used to represent the degrees of erosion
of a surface. The neighbourhood statistics tool in ArcGIS was used
to calculate the shape of the area around a specific cell. The statis-
tic type tool was then used to obtain the mean and minimum val-
ues of elevation within the neighbourhood, which had a size of
5

3 m � 3 m cells. The difference in the mean and minimum values
obtained from the raster calculator tool was the map of the surface
cutting depth. This map was divided into six classes.

Relief degree of land surface (RDLS) (Fig. 3h): Defined as the
maximum difference in height per unit area, RDLS can reveal ter-
rain characteristics, so it was considered as an important influenc-
ing factor in some previous studies (Tien Bui et al., 2012; Huang
et al., 2018). The procedure to generate the RDLS map was similar
to that of the surface cutting depth. The maximum and minimum
values of elevation within the neighbourhood were calculated in
ArcGIS, and their difference was the RDLS value. It ranged from 0
to 85 and was divided into nine classes.

Distance to rivers (Fig. 3i): Rivers impact slope stability
because they can cut and erode riverbanks, and these behaviours
reshape and carve geomorphology. Moreover, fluctuations of the
water level affect the water table of the slopes to a great extent.
We used the distance to rivers as the index to reflect the effect of
rivers on landslides, and the index had eight classes.

Topographic wetness index (TWI) (Fig. 3j): As a hydrological
parameter, the TWI describes the topographic attributes of hydro-
logical processes, because both slope and local upslope contribut-
ing areas are considered (Moore et al., 1991). The equation to
calculate TWI is expressed:

TWI ¼ ln a=tanbð Þ ð2Þ
where a is the upslope area draining from a specific cell and tanb is
the slope angle of this cell. To generate the TWI map, the hydro-
graphic statistics tools in ArcGIS were used to calculate the flow
direction and accumulation at each cell. Normally, areas with smal-
ler TWI values are recognized as landslide-prone area (Achour and
Pourghasemi, 2020). The results of Yanchang County fitted well this
point: The TWI ranging from 2.925 to 26.369 was divided into five
classes.

Modified normalized difference water index (MNDWI)
(Fig. 3k): MNDWI is a hydrological factor that can reflect the water
information of the ground surface (McFeeters, 1996; Xu, 2006).
Hence, the effect of hydrological conditions on landslide occur-
rences can be recognized by this factor to a certain degree. It was
obtained from the Landsat 8 images by using the equation as
follows:

MNDWI ¼ PðGreenÞ � PðMIRÞ
PðGreenÞ þ PðMIRÞ ð3Þ

where P (Green) and P (MIR) are measurements of the spectral
reflectance from remote sensing images, and they are the green
band and middle infrared band, respectively. In this study,
MNDWI was divided into four classes and it can be found that
landslides were mainly distributed in the area with large MNDWI
values.

Normalized difference vegetation index (NDVI) (Fig. 3l): NDVI
reflects the greenness degree of an area and may change the distri-
bution of soil and hydrological processes on slopes. Therefore, it
can be used as a proxy for the land use map (Arabameri et al.,
2020). It is normally derived from remote sensing images and
can be calculated using the equation:

NDVI ¼ PðNIRÞ � PðRedÞ
PðNIRÞ þ PðRedÞ ð4Þ

where P (NIR) and P (Red) represent the spectral reflectance of the
infrared band and red band, respectively. In this study, the Landsat
8 images were selected as data sources to create NDVI maps. NDVI
values in the area had a range of 0.054–0.879 that was divided into
five classes.

Normalized difference building index (NDBI) (Fig. 3m): NDBI
reflects the density of building distribution, thus it can be consid-

http://www.gscloud.cn/home


Fig. 3. Influencing factor maps used for landslide susceptibility modelling. (a) Elevation, (b) slope, (c) aspect, (d) plan curvature, (e) profile curvature, (f) SDS, (g) surface
cutting depth, (h) RDLS, (i) distance to rivers, (j) TWI, (k) MNDWI, (l) NDVI, (m) NDBI and (n) lithology.
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ered an index to represent the population and engineering activi-
ties. The principle to generate the NDBI map is similar to that of
NDVI (Huang et al., 2018). The NDBI can be obtained as follows:?>

NDBI ¼ PðMIRÞ � PðNIRÞ
PðMIRÞ þ PðNIRÞ ð5Þ

where P (MIR) and P (NIR) are the spectral reflectance of the middle
infrared band and infrared band of Landsat 8 images, respectively.

Lithology (Fig. 3n): The mechanical and hydrological properties
(e.g., permeability and friction angle) of rock masses vary between
lithological units, so this factor may greatly influence slope stabil-
ity. The lithology map was obtained from the geological map at a
scale of 1:100,000. We find that the lithology units outcropping
in the study area are limited, including only Triassic (T) and Qua-
ternary (Q) units. According to chronological order, the Triassic
group was divided into middle (T2) and upper (T3) units.

3. Methodology

3.1. Frequency ratio model

One basic assumption in landslide susceptibility assessment
based on data-driven models is that future landslides are more
likely to occur under the same/similar external conditions that
led to past landslides (Zêzere et al., 2017). Hence, it is normally
an important step to analyze the correlation between historical
landslides and environmental conditions. Frequency ratio (FR) is
a commonly-used model on this issue which can expose the statis-
tical associations between landslide distributions and each influ-
encing factor. The principle of it has been reported by some
previous studies (e.g., Yilmaz, 2009; Yalcin et al., 2011). If one
landslide-related factor is divided into several categories, the FR
of one given category can calculated as follows:

FR ¼ Ni=TN
Ai=TA

ð6Þ

where Ni is the area of landslides in the ith category, TN is the total
area of landslides in the study area, Ai is the area of ith category, and
TA is the total area of the study area. In general, the FR is an index to
reflect the density of landslide distribution in a certain range of one
influencing factor. If FR is more than 1, the category can be consid-
ered as positive to landsliding. On the contrary, the value of less
than 1 represents a negative condition for the landslide occurrence.

3.2. C5.0 decision tree model

The DT model is essentially a tree involving a set of decision
nodes, among which the root and each internal node are labelled
with a question (Pradhan, 2013). The arcs descend from each root
node to leaf nodes, where a solution to the associated question is
offered. A split is created at each node by making a binary decision,
which separates one class or several classes from the global data-
set. The C5.0 is a kind of algorithm which calculates the best splits
based on information gain ratio (IGR). The IGR is considered as a
probability-based measure used to calculate the level of uncer-
tainty reduction. Generally, the decision tree grows down by calcu-
lating the split with the biggest IGR until the best solution is
available. The IGR is calculated as follows:

GainRatio ¼ GainsðN; TÞ
EntðTÞ ð7Þ

where GainRatio is the IGR, N is the global dataset, T is the predictor
variable, and Gains(N,T) is the entropy difference between the orig-
inal and new nodes, which is calculated as follows:
7

GainsðN; TÞ ¼
Xt
i

PðCi Nj Þlog2PðCi Nj Þ
" #

�
Xk
j

Tj

�� ��
Nj j � 1

 !
ð8Þ

where C is a set of target variable, t is the category number of C, K is
the category number of T, i.e, Ci (i = 1,2,. . .,t), Tj (j = 1,2,. . .,k).

In the modelling process, the boosting algorithm was adopted
to improve the robustness of the C5.0 DT model, which can control
both the bias and variance (Dou et al., 2020). Its basic procedure
can be divided into the following steps: (i) initialize the weights
of the training sample; (ii) obtain training subsets sequentially;
(iii) calculate the error of the subsets and update the weights;
and (iv) end the training and evaluate the classification results.
Additionally, a cross-validation method was utilized to investigate
the verification accuracy of the model. According to Yao et al.
(2008), the dataset is divided into n folds, among which one fold
is utilized for validation, and the other folds (n�1 folds) are the
training data. When every fold is selected as the validation set, n
model accuracies are obtained by iterating the same step. Finally,
the average of these obtained accuracies, which is referred to as
the cross-validation accuracy (CAV), is considered the model accu-
racy. Compared to the traditional approach, this method is helpful
for overfitting problems and improving the generalization capabil-
ity of the DT model.

3.3. K-means cluster algorithm

Clustering is a useful unsupervised learning technique because
it achieves the division of unknow objects into several groups. The
members in each group have similar properties and characteristics.
The K-means cluster algorithm is a relatively simple way to imple-
ment clustering analysis. Detailed information about the algorithm
has been presented by Hartigan and Wong (1978) and Melchiorre
et al. (2008). The principle for it is as follows:

(i) A certain number K initial centroids of the given input data
are determined randomly, then the data are divided into several
groups. The Euclidean distance (d) between the data and centroids
are calculated as follows:

dðXt;XnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
u¼1

ðXut � XunÞ2
s

ð9Þ

where Xt and Xn are input data and given centroids, respectively, u is
the data property, l is the number of the properties. When mod-
elling the landslide susceptibility, the occurrence probability of
the landslide is the data property, so n is set as 1 in this study.

(ii) After the first time calculation of d, the obtained result is
recorded as D(0)={D1

(0), D2
(0), . . ., DK

(0)}, and the new centroids are
updated using the following equation:

XðmÞ
n ¼ 1

hðm�1Þ
n

X
Xt¼Dðm�1Þ

tn

Xt ð10Þ

where Xn
m is the new centroid, m is the number of iterations, hn(m�1)

is the number of data in the new group based on new centroids.
(iii) iterating the above step, and ending the calculation process

when n
(m) = hn

(m�1) and D(m) = D(m�1). The obtained centroids are the
clustering centres of the input data.

3.4. Contribution of influencing factors

It is essential to evaluate the relative importance of influencing
factors because it can help to establish appropriate factor systems
for landslide susceptibility analysis. Many techniques have been
employed to quantify the contribution of factors, such as random
forest, learning vector quantization and principle component anal-
ysis (Pavel et al., 2011; Tang et al., 2020; Youssef and Pourghasemi,
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2021). In this study, the C5.0 package (Kuhn et al., 2015) based on
the R 4.0.3 environment was used to calculate the contribution of
factors. The package provides a function named C5.0imp to achieve
this goal. By default, the function determines the factor importance
by calculating the percentage of training datasets that fall into the
terminal nodes.

3.5. Accuracy measures

Some studies evaluate the result accuracy by accounting for the
number or frequency of landslides located in different susceptibil-
ity zones (e.g., Ahmed, 2015; Guo et al., 2019b), but it is not logical
because the areas of different landslide susceptibility zones vary.
Hence, our validation task was conducted mainly using two indica-
tors: landslide frequency ratio (FR) and landslide frequency density
(FD). These indicators can be calculated as follows:

FR ¼ Si=S
Ai=A

ð11Þ

FD ¼ Ni=Ai ð12Þ
where Si is the landslide area in each susceptibility zone, S is the
total area of landslides, Ai is the area of a specific landslide suscep-
tibility zone, A is the total area of the study area, and Ni is the num-
ber of landslides in each susceptibility zone. Considering the
landslide area and susceptibility area at the same time, the indica-
tors reveal the landslide distribution more appropriately. Addition-
ally, the receiver operating characteristic (ROC) curve that has been
widely accepted, was also used in this study. The area under the
curve (AUC) is an important index to reflect the model
accuracy. The details on its principle have been introduced by pre-
vious literature (e.g., Frattini et al., 2010; Wu et al., 2020). All
these methods are done with the help of historical landslide
locations.

4. Modelling procedure

After determining the landslide inventory map and influenc-
ing factor maps, the results from the FR analysis were used as
the input, and the C5.0 decision tree and K-means cluster algo-
rithm were integrated to generate the final landslide susceptibil-
ity map. The study area contains a total of 2,622,482 cells, while
3432 cells involve landslides, which were divided into two parts:
70% of the cells (2402 cells) were randomly selected as the train-
ing dataset, and the remaining 30% (1030 cells) were used for
validating the model. Meanwhile, the same number of non-
landslide cells were also selected because they offer the neces-
sary information on unfavorable conditions for landslide occur-
rence. As a result, during the training process, the attribute
matrix F(t)4804�14 presenting the influencing factors of these cells
was set as the input data, while the output data was the occur-
rence probability matrix of the landslide events (P(t)4804�1), which
was presented as binary response data, i.e., 0 and 1. Similar set-
tings were established during the validation stage: the influencing
factor matrix (F(v)30,000�8) and landslide occurrence probability
matrix (P(v)30,000�1) of validation cells were considered as input
data and output data, respectively.

The modelling process adopted SPSS Modeler software, which
mainly contained the following procedures:

(i) The training dataset was first input into the software to gen-
erate the decision tree based on the C5.0 algorithm. The
boosting and cross-validation techniques were used to
improve the robustness of the training results;
8

(ii) The influencing factor values on every cell were extracted
using GIS and were subsequently input into the constructed
C5.0 DT model. The occurrence probabilities of landslides in
these cells were obtained, and all the values were expressed
in nondimensional terms ranging from 0 to 1.

(iii) The factor values of all landslide cells and the same number
of non-landslide cells and their landslide state (0: non-
landslide; 1: landslide) were combined into a matrix. The
matrix was then input to R 4.0.3 software, and the C5.0 pack-
age was loaded to calculate the contribution of such factors.
In this process, the number of boosting iterations was set to
1, and the confidence factor was 0.95.

(iv) The occurrence probability matrix obtained from (ii) was
introduced into SPSS software, and the K-means cluster
algorithm was used to obtain five centroids in the dataset.

(v) The data near one centroid were reclassified into the same
group, and this centroid was considered the center of this
group. The average of two adjacent centroids was considered
the cut-off value between different susceptibility zones,
because this value distinguished two groups of data with dif-
ferent properties. Based on this, the landslide susceptibility
map was created, where the study area was classified into
five susceptibility zones ranging from very low to very high.

(vi) Finally, the model accuracy was validated by analyzing the
distribution of landslide inventory points and random
points. Moreover, the model’s performance was compared
with other models.

The overall flow chart of this study was showed in Fig. 4.
5. Results

5.1. Factor importance and landslide susceptibility mapping

The final resulting classification scheme of each factor and the
FR of each category are presented in Table 2. We can see the influ-
ences of different categories within one factor on landslide occur-
rence. For instance, most landslides distributed in areas with
middle elevations (800–1100 m), and areas with lower and higher
elevations only report a small number of landslides. The FRs of all
classes were less than 1 except for the plan curvature of 0–20, thus
indicating that this class had a positive effect on landslides. FRs
roughly increased with increasing surface cutting depth. This is
mainly because a large cutting depth provides a longer distance
and larger space for the movement of slopes. Most landslides are
located within 500 m of rivers, which reveals that rivers in the area
are a positive factor for landslide occurrences. The number of land-
slides in the Quaternary and upper Triassic units was the largest,
where the outcropped lithologies were mainly loess, sandstone
and mudstone.

The obtained importance of the influencing factors is shown in
Fig. 5. Among the 14 factors, five factors had relatively high contri-
butions to landslide susceptibility, namely, lithology (importance
measurement (IM) = 1), elevation (IM = 0.97), slope (IM = 0.97),
distance to rivers (IM = 0.93) and aspect (IM = 0.91). Seven factors
had a relatively low importance, including surface cutting depth
(IM = 0.19), TWI (IM = 0.13), NDBI (IM = 0.10), plan curvature
(IM = 0.06), SDS (IM = 0.04), NDVI (IM = 0.01) and MNDWI
(IM = 0). The two factors (profile curvature and RDLS) with IM val-
ues between 0.4 and 0.5 had moderate contributions to landslide
susceptibility. Overall, this probably indicates that geological
(lithology) and topographical factors (e.g., elevation, slope and
aspect) are more important for landsliding in the region than the
evaluated hydrological (e.g., TWI and MNDWI) and environmental
(e.g., NDBI and NDVI) factors. Additionally, none of them had a neg-



Fig. 4. The flow chart of the study. (a) The modelling process for landslide susceptibility mapping, and (b) the process of K-means cluster algorithm.

Table 2
The frequency ratio of each category within the influencing factors.

Factor Category FR Factor Category FR Factor Category FR

Elevation (m) 400–700 0 Profile curvature 9–12 0.900 Distance to river (m) 400–500 0.748
700–800 0.026 12–18 0.772 500–800 0.391
800–1000 1.663 18–24 0.566 800–900 0.705
1000–1100 0.823 24–30 0 900–1000 0.937
1100–1200 0.381 SDS 1–1.05 0.567 >1000 0.211
1200–1300 0.552 1.05–1.1 1.692 TWI 2.925–5.925 1.198
1300–1400 0 1.1–1.15 2.121 5.925–11.925 0.723

Slope 0�–10� 0.198 1.15–1.2 1.638 11.925–14.925 0.130
10�–15� 0.605 1.2–1.25 0.666 14.925–17.925 0.054
15�–20� 1.253 1.25–1.57 0 17.925–26.369 0
20�–30� 1.923 Surface cutting depth 0–5 0.227 MNDWI 0.192–0.292 0.467
30�–35� 1.616 5–10 0.593 0.292–0.492 0.933
35�–51� 0 10–15 1.122 0.492–0.592 1.858

Aspect �1� 0 15–25 2.078 0.592–0.980 0
0�–22.5� 0.640 25–30 2.446 NDVI 0.054–0.154 0
22.5�–67.5� 1.459 30–44 0 0.154–0.204 1.441
67.5�–112.5� 0.765 RDLS 0–5 0.037 0.204–0.404 0.988
112.5�–247.5� 1.252 5–15 0.298 0.404–0.879 0
247.5�–292.5� 0.486 15–20 0.672 NDBI 0.015–0.515 0
292.5�–360� 0.939 20–30 1.147 0.515–0.565 1.179

Plan curvature 0–20 1.390 30–35 1.875 0.565–0.615 0.867
20–35 0.994 35–40 2.843 0.615–0.665 1.399
35–60 0.646 40–45 2.272 0.665–0.7 0
60–65 0.440 45–55 1.861 Lithology T2w 0
65–70 0.210 55–85 0 T3h 1.956
70–75 0.090 Distance to river 0–100 m 1.036 T3y 2.423
75–82 0.426 100–300 m 1.873 T2t 0.084

Profile curvature 0–9 1.035 300–400 m 1.034 Qp1-3 0.933
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ative value of importance, so it is reasonable to consider them all as
influencing factors for the landslide susceptibility analysis in Yan-
chang County. However, such results do not mean that every factor
can improve the model performance. As Glade and Crozier (2005)
reported, adding data into the input dataset can improve the pre-
dictive capability of the model with a given complexity, but the
model performance perhaps decreases if the data availability con-
tinuously increases.
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As shown in Fig. 6a, a landslide susceptibility map created
adopting the method proposed in this study was presented, where
the K-means cluster was used to obtain the landslide susceptibility
zonation. To make a comparison, the natural break, which is a com-
monly used classifier in ArcGIS, was also applied to generate the
landslide susceptibility map (Fig. 6b). We can see some differences
between these two maps. The map from the K-means cluster
method had fewer very high (high) susceptibility areas than the



Fig. 5. Relative importance calculated from C5.0 package in R software.
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map obtained employing natural breaks. In contrast, Fig. 6b had
fewer very low (low) susceptibility areas than Fig. 6a. This is
mainly because the two classifications led to different thresholds
of probability of landslides calculated by the C5.0 DT model.

Regarding the spatial distribution, the high- and very high-
susceptibility zones were mostly distributed in areas near the
small river networks, especially in the central and northern parts
of the area. However, the eastern part where the largest river flows
through is mainly low susceptibility areas. This is mainly because
this area is characterized by low elevations and flat slope angles,
which make it difficult to induce landslides. The summary regard-
ing the landslide characteristics shows that nearly all landslides in
the study area have a shallow depth of less than 10 m. Because the
amount of annual rainfall in the area is generally small, the most
frequent triggering factor is not heavy rainfall events, but engi-
neering activities. This leads us to the conclusion that the distribu-
tion of settlement may have a large impact on landslides. Actually,
the centre of Yanchang County was mainly constructed along riv-
ers, where fast urban development has been observed over the past
decade. Hence, shallow landslides have been induced by human
engineering activities. This phenomenon explains why the distance
to rivers has a relatively large weight on landslide susceptibility.
Another spatially distributed zone associated with high/very high
landslide susceptibility is located in the southern part of the study
area. Given that it covers many areas with moderate elevations and
relatively high slope angles (20�–35�), the special properties of
loess deposits may be the reason for slope instability in this zone.
This can be explained by a similar conclusion has been obtained on
the Loess Plateau by previous works (e.g., Zhang and Liu, 2010; Shu
et al., 2020). Additionally, an important shared characteristic of
zones characterized by high landslide susceptibility is that they
are mostly covered by the strata of Qp1-3 (Quaternary loess) and
T3y (mainly composed of siltstone and mudstone). This can also
be inferred from the results listed in Table 2: the frequency ratios
of these strata are 3.225 (Qp1-3) and 3.3 (T3y), which are much lar-
ger than those of other lithologies in the area.

Overall, the resulting landslide susceptibility maps have similar
patterns as the landslide spatial distribution, especially regarding
the high susceptibility zones. From the perspective of qualitative
analysis, the well-matched relationship between susceptibility
zonation and landslide locations represents the appropriate identi-
fication of exiting landslides employing these models.
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5.2. Model validation and accuracy analysis

To better quantitatively explain the rationality and performance
of the model, two machine learning approaches (support vector
machine and Bayesian network models) and two statistically-
based approaches (frequency ratio and weight of evidence models)
were used for comparison. The K-means cluster was selected as the
classification method. The resulting landslide susceptibility maps
are shown in Fig. 7. The differences among the four maps here were
more evident than in Fig. 6. Given that the models used to calculate
landslide susceptibility were inherently different (statistical mod-
els and machine learning models), such differences were
reasonable.

According to Eqs. (11) and (12), two statistical indicators,
namely, FR and FD were calculated (Fig. 8). Generally, the his-
tograms of the indicator for different susceptibility levels show
the regularity: the higher the susceptibility level is, the larger the
indicator is (Tang et al., 2020; Zhao and Chen, 2020). It can be seen
that the results fit well with this regularity. For the very low and
low susceptibility levels, the FR index (Fig. 8a) was below 1 for all
models. However, from the moderate level on, the FR values evi-
dently increased, and the very high susceptibility level had the lar-
gest values. The FR values representing the very high level of the
five models used were 6.76 (C5.0 DT), 3.59 (SVM), 3.95 (BN), 3.69
(FR) and 2.69 (WOE), which were approximately four times the val-
ues representing themoderate and low susceptibility levels. Similar
results were also observed in the FD curves (Fig. 8b). This revealed
that the landslide pixel distribution became gradually denser with
increasing landslide susceptibility levels. Among these models, the
C5.0 DT model had the best performance. On the one hand, it had
the largest FR and FD values at the very high and high susceptibility
levels compared with the other models. For example, the FR values
for the very high and high levels were 6.76 and 2.93, respectively,
which were significantly greater than those of the other models.
On the other hand, the FR and FD values of the C5.0 DT model for
the low susceptibility levels were small. Its FR and FD at the very
low level were 0.076/km2 and 0.01/km2, respectively, which were
smaller than those of the other models. Such results exposed that
the landslide susceptibility map generated by the C5.0 DT model
reported the highest concentration of landslides in the area with
a high susceptibility level, and there were few landslides erro-
neously classified into the low susceptibility zones.



Fig. 6. Landslide susceptibility maps generated by using the C5.0 decision tree algorithm. (a) K-means cluster classification method, (b) Natural breaks classification method.
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Second, the occurrence probability of all 82 landslides was anal-
ysed. Differing from the first step, which was pixel-based, this
assessment was based on landslide events. The pixel with the high-
est occurrence probability within each landslide event was
selected to characterize the susceptibility of the landslide. This
step was conducted by using the ‘‘zonal statistics as table” tool in
ArcGIS. The distribution of the occurrence probability of these
landslides was compared with that of the randomly selected points
contained in the training dataset. It is evident that highest number
of landslide points is distributed in zones with very high and high
11
susceptibility levels (Fig. 9a). For the five models, the percentages
of landslides in the range of the top 20% interval of the occurrence
probability were 89.0% (C5.0 DT), 96.3% (SVM), 85.4% (BN), 47.6%
(FR) and 81.7% (WOE). In contrast, the random points (i.e., non-
landslide pixels) were mostly located in the very low and low sus-
ceptibility zones (Fig. 9b). The percentages of points corresponding
to the top 20% interval of the occurrence probability were 10.1%
(C5.0 DT), 18.6% (SVM), 9.6% (BN), 1.6% (FR) and 10.0% (WOE).
These results also confirm the satisfactory performance of the
model used for identifying landslides.



Fig. 7. Landslide susceptibility maps using different models and K-means cluster classification method. (a) SVM, (b) BN, (c) FR, and (d) WOE models.
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Finally, two types of curves were computed to quantify the
accuracy of the maps by adopting two different datasets. One is
the receiver operating characteristic (ROC) curve obtained by using
the training dataset (i.e., the landslide pixels and the same number
of non-landslide pixels), whereas the other curve uses all the pixels
to calculate the ROC curve to show the prediction performance of
the obtained landslide occurrence probability. As seen in Fig. 10a,
the accuracy of the C5.0 DT model had the highest area under
the curve (AUC) of 0.883, followed by the SVM (0.850) and BN
(0.813) models. The AUC values of the other two models were
relatively small, less than 77%, among which the accuracy of the
FR model was the worst. From the perspective of prediction perfor-
mances (Fig. 10b), the AUCs of these models were 0.855 (C5.0 DT),
0.825 (SVM), 0.799 (BN), 0.719 (WOE), and 0.620 (FR). The C5.0 DT
model and the FR model were still the best and worst models,
respectively. Moreover, the prediction performance of all AUCs of
the curves presented slightly smaller but similar trends compared
to those curves that used the training dataset. This is mainly
because the latter was a supervised classification, while the mod-
elling process for most datasets contained in the former was unsu-
pervised. On the other hand, the similar increase mode between
the two curves showed that the models are robust when address-
ing the different datasets.

Overall, according to the statistics and ROC evaluation, the sus-
ceptibility maps resulted from all the models showed decent fit-
ting/predictive performance towards recorded landslides. In
particular, the accuracies of machine learning methods, namely
the C5.0 DT, SVM and BN models, increased by at least 5% com-
12
pared with two statistically-based models. Among all the models,
the performance of the C5.0 DT model was better than the other
models by 3.0%–13.5%, thus indicating it can be a powerful tool
to mapping landslide susceptibility at a regional scale.

5.3. Comparison of susceptibility zonation methods from the viewpoint
of risk management

To clarify the differences between classification methods, the
natural breaks method implemented in ArcGIS was applied to
generate landslide susceptibility maps (Fig. 11). The distribution
of susceptibility level areas and the corresponding percentage of
landslides in each level were computed and are shown in
Fig. 12. Generally, an ideal susceptibility model should have a less
area containing the high susceptibility class, while this area con-
tains more landslides. In this regard, the machine learning models
reported better performances than the statistically based models.
Compared with the natural beak classification method (Fig. 12b),
the C5.0 DT model using the K-means cluster classification
(Fig. 12a) had smaller high susceptibility zones, but fewer land-
slides were contained. Similar results can also be observed among
the different models. When using K-means cluster classification,
the SVM and BN models placed more landslides in high suscepti-
bility zones than the C5.0 DT model (Fig. 12a). This should be
understood from two perspectives. On the one hand, the pro-
posed model in this study had fewer landslides occurring in high
susceptibility areas because the total area of this susceptibility
level was smaller. When using the K-means cluster classification,



Fig. 8. Model accuracies presented by the statistical indicis. (a) FR, and (b) FD. The number in the bar shows the value for each landslide susceptibility level.
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the cumulative percentage of landslides occurring under high and
very high susceptibility levels was 67.1% (C5.0 DT), 78.3% (SVM)
and 69.8% (BN). This percentage changed to 79.9% (C5.0 DT),
78.2% (SVM) and 70.2% (BN) when the natural breaks classifica-
tion was applied. However, the increase in the total area with
higher susceptibility levels can also trigger false alerts in many
stable pixels. Taking the extreme situation as an instance, if the
whole study area is classified into a high susceptibility area, all
landslides are identified correctly, but it is evident that the model
is not reasonable. In other words, a good model depends on its
13
ability to identify landslide initiation points without classifying
large areas as unstable (Goetz et al., 2011). From this viewpoint,
the proposed procedure identified approximately 70% of land-
slides in high susceptibility areas, which only covered 16.6% of
the study area. In contrast, in the map obtained from the C5.0
DT model and the natural breaks methods, high susceptibility
zones covered 23.2% of the total area, which was evidently higher.
Such differences indicated the higher efficiency of the proposed
model than other models. This can also be confirmed by the sta-
tistical index FR (Table 3).



Fig. 9. The distribution of points versus the landslide probability of occurrence. (a) Landslide points, and (b) random points.
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6. Discussion

6.1. Understanding the accuracy of landslide susceptibility maps

The accuracy of the proposed model in this study is approxi-
mately 88%, which is not superior to some machine learning mod-
els used by other studies (e.g., Achour and Pourghasemi, 2020).
However, the evident difference in the statistical index between
each susceptibility level showed that most landslide inventory
points were identified in the final map. Moreover, as Goetz et al.
(2015) reported, a ‘‘correct” model in a set of competing models
does not exist in reality when various techniques and methods
are available for the purpose of model selection. Hence, it is more
important to select a model according to the specific scientific
goals of the study, not only using the accuracies expressed by ‘‘bor-
ing” numbers.

In the case of landslide risk management, one of the main objec-
tives for the civil protection department is the detection of more
landslides in potential higher risk areas. However, misclassification
costs (Cantarino et al., 2019) or time costs should also be consid-
ered because they have a close relationship with the final decisions
(Carrara et al., 1991). A comparison of the multiple indicators men-
tioned above indicated that in the map created by the C5.0 DT and
K-means cluster model, the distribution of very high and high sus-
ceptibility zones was exceptionally focused, meaning that they
covered most landslide initiation areas, but few places without
existing landslides were identified as landslide-prone zones. This
is a user-friendly feature because this model allows researchers
to focus on more specific but fewer areas with a high degree of
landslide susceptibility, which may reduce the time cost and sub-
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sequently improve the efficiency of landslide risk management.
We do not claim that the proposed procedure has the best accuracy
relative to other methods; However, it does provide a balance
between accuracy and efficiency, and this balance may be rather
important for landslide risk practices in some areas. Hence, we
are not expecting perfect results from any model because all of
them have limitations. Users and decision makers need to select
a model depending on their management objectives. Last but not
least, different findings from multiple comparisons demonstrate
that a single metric may only provide limited insight into the full
model performances because each metric may fail to totally cap-
ture the local conditions of certain geomorphological characteris-
tics (Reichenbach et al., 2018).

6.2. Insights on the evaluation of factor importance and model
performance

The relative importance of each influencing factor was evalu-
ated based on the standardized approach of C5.0 in the R environ-
ment. However, this might be only a rough estimate because the
sampling times of the training data in the algorithm were limited.
In fact, the k-fold cross-validation technique has been applied
when performing susceptibility modelling, so it should be expected
that the importance of factors would not have evident differences
when only using SPSS Modeler. This is also the reason why we
computed the factor importance using a separate procedure, not
SPSS Modeler. On the other hand, this means that a certain degree
of uncertainty was contained in the factor evaluation, but its
impact on the final susceptibility mapping may have been minor.
In particular, given that the relationship between landslides and



Fig. 10. Model accuracies presented by (a) the ROC curve using the training dataset (i.e., landslide pixels and random selected no-landslide pixels), and (b) the curve showing
the predictive performance by using all the pixels in the study area.
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influencing factors at the regional scale is a nonlinear high-
dimensional system, the predicted contribution of each factor
may vary among many conditions, including geomorphic condi-
tions, input data resolutions and even modelling techniques
(Catani et al., 2013; Goetz et al., 2015). Hence, the present results
on the factor importance are considered preliminary and data-
based, and deeper analysis on geomorphological and geological
conditions is necessary to better understand and explain the con-
tribution of such factors. Relevant experiences from similar studies
can be observed and considered (Yesilnacar and Topal, 2005;
Segoni et al., 2020). For instance, Yesilnacar and Topal (2005)
tested the importance of factors for landslides in the Hendek
15
region (Turkey). Although the results obtained from the forward
stepwise logistic regression and neural network models were dif-
ferent, they finally determined the most important factors through
field visits and analyses of the geology.

In the current analysis, all factors had positive importance,
excluding MNDWI (importance = 0). However, its importance is
not negative, which means it did not decrease the model’s perfor-
mance. An additional calculation also supported this point: the
landslide susceptibility map without considering MNDWI had an
ROC value of 0.87, which was less than (almost the same) that of
the map considering this factor. Hence, from the perspective of
model complexity, it is also necessary to investigate the contribu-



Fig. 11. Landslide susceptibility maps using different models and natural breaks classification method. (a) SVM, (b) BN, (c) FR, and (d) WOE models.
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tion of one factor to landslide susceptibility through geomorpho-
logical analyses. It should be noted that we are not denying the
validity of data-based techniques. On the contrary, we highlight
the importance of analysis on geomorphic conditions, which may
benefit subsequent assessment and make the results have more
geomorphological significance.

In addition to the methods employed in this study, many crite-
ria have been applied in the literature to evaluate model perfor-
mance. For example, Goetz et al. (2015) used the true positive
rate value measured at a 10% false positive rate to compare models.
Guzzetti et al. (2006) proposed criteria to rank the quality of a
landslide susceptibility assessment. The principles behind these
criteria are easy to understand, i.e., they are used to translate the
ROC curves into a cut-off measure that can be used to assess speci-
fic classification or prediction requirements. Another potential
result of different evaluation criteria is the generation of different
predictive surfaces (Cantarino et al., 2019). Under this condition,
users must be aware of the backgrounds and final objectives of
model’s applications, because even a small difference in the evalu-
ation measure may have practical consequences (Beguería, 2006).
With this respect, statistical indices may be helpful but they were
absent in the present study. Another challenge related to landslide
susceptibility assessment is how to define strategies for an ‘‘opti-
mal” combination of multiple forecasts, and their associated ter-
rain zonation (Rossi et al., 2010). However, this study focused on
the introduction of a modelling procedure and a model comparison
method and failed to address this issue. As we can see, the SVM
16
model had a relatively better performance in the higher risk zone,
whereas the C5.0 DT and statistically based models were better at
identifying stable pixels (Fig. 9). Hence, their combination in the
future may help overcome the uncertainties inherent in dealing
with the differences among landslide susceptibility classes.

7. Conclusions

Reliable landslide susceptibility mapping is the integral step for
risk assessment and mitigation. Compared with previous studies,
the contributions of this study mainly include two aspects: (i)
adopting a novel machine learning model, the C5.0 decision tree,
to calculate the landslide occurrence probability, and (ii) employ-
ing the K-means cluster algorithm to perform susceptibility zona-
tion. Based on the experiences obtained from Yanchang County
located in northwestern China, we stated that although the model
required more time to achieve zonation, it presented a superior
performance. On the one hand, the ROC analysis indicated that
both the model accuracy (AUC = 0.883) expressed by the training
data and the predictive performance (AUC = 0.855) expressed by
all the pixels were the best, compared with two commonly used
machine learning algorithms (SVM (AUC = 0.850, 0.825), BN
(AUC = 0.813, 0.799)) and two statistically based models (FR
(AUC = 0.753, 0.620), WOE (AUC = 0.760, 0.719)). On the other
hand, the comparison of statistical indicators revealed that in the
map created by the proposed model, high susceptibility zones
had higher landslide frequency ratios and landslide density values



Fig. 12. The classification results considering different classification methods. (a) K-means cluster, (b) natural breaks. VL: very low, L: low, M: moderate, H: high, VH: very
high.

Table 3
FR values in each susceptibility level.

Model Susceptibility level

Very
low

Low Moderate High Very
high

C5.0 DT + K-means
cluster

0.076 0.358 1.350 2.927 6.755

C5.0 DT + natural breaks 0.031 0.225 0.663 2.171 4.997
SVM + K-means cluster 0.140 0.490 0.869 1.361 3.593
SVM + natural breaks 0.135 0.463 0.869 1.368 3.598
BN + K-means cluster 0.149 0.594 0.855 1.665 3.953
BN + natural breaks 0.144 0.597 0.838 1.665 3.904
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than other models but had smaller total areas. This indicated that
the distribution of landslides in high susceptibility zones was more
focused without containing more ‘‘stable” pixels. Moreover, only
3.4% of known landslide pixels were located in very low suscepti-
bility zones, and only one landslide event was determined to have
an occurrence probability less than 0.5. Such results indicated that
there were few false classifications of historical landslides. Hence,
17
the obtained map is more readily available for decision makers
because it may reduce the associated time costs and subsequently
improve the efficiency of landslide risk management.

In this study, the model performances were quantified and eval-
uated based on multiple metrics, but some of them exposed differ-
ent trends and findings. Hence, it is recommended that the
assessment of model performance should be linked with the speci-
fic backgrounds and objectives of landslide risk management. The
proposed model performed well with respect to the pure predic-
tive performance, but some uncertainties exist in the current anal-
ysis; in particular the accuracy of higher risk zones identified by
the K-means cluster classification should be improved. Neverthe-
less, the outcomes seem to be coherent and indicate that if the
landslide inventory and the input data are well prepared, the
C5.0 decision tree combined with the K-means cluster model can
identify the landslide locations effectively. Although the modelling
procedure was conducted in a mountainous area located on the
Loess Plateau (China), it can be replicated in other similar settings.
The resulting map can be used as a basic tool for engineers and
decision makers in land use planning and can assist in the reduc-
tion of future landslide risks by implementing various measures
for prevention and mitigation.
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